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Abstract-- We present a general framework for parsing 
document images into words without restrictions on 
documents’ script or mode of rendering (i.e., handwritten 
or printed). Our approach is based on the geometric 
decomposition and metrical characterization of the 
unprinted/unwritten space (page background) of a 
document by treating it as a complex shape with multiple 
“holes” corresponding to connected character sets. This 
recasts the structure of the unprinted page space in terms 
of neighborhood relationships and distances among 
connected character sets. Proximate connected character 
sets are then grouped into words based on a graph pruning 
approach. Such a technique is expected to have 
applications in automatic web browsing and word 
frequency-based classification of document images on the 
Internet.  

 
Index Terms-- Constrained Delaunay triangulation, 
document, linguistic, segmentation, shape, string, syntactic 
 

I. INTRODUCTION 

The rapidly increasing usage of the Internet as a source of 
information has resulted in the explosive growth of textual 
documentation available on the web. While a large portion of 
such documentation is available in machine-readable (ASCII) 
form, a significant portion of archived textual information is 
found in the form of scanned or otherwise imaged documents. 
While some of this may be eventually converted to machine-
readable form, it is infeasible to eliminate this form of 
information representation altogether in the near future. This is 
especially true in the case of handwritten documents and 
documents across languages and scripts.  The efficient 
retrieval of information from document images on the Internet 
calls for web-based tools that automate query-driven searches 
for document images. A key aspect of this capability is word 
spotting and word frequency counting in document images. 
However, for this to be achieved, it must be possible to 
automatically isolate individual words from the document. 
This task is relatively easy when confronted with printed linear 
text in English, Russian, Italian, etc. However, it is 
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considerably more difficult to do so when presented with 
handwritten text in these languages or languages with complex 
script structures such as Arabic, Chinese, and several Indian 
languages.  
Although there have been numerous approaches to the 
problem of document segmentation [4] [5] [6] [7], they either 
restrict the variability tolerated in the document (i.e., they 
expect more or less uniform spacing, regularity of line 
structure, etc.,) or are applicable to a particular script or 
format. There have been few attempts at addressing the word 
segmentation problem across scripts and modes of rendering. 
In this paper we present a general technique for parsing 
document images into paragraphs, sentences, and words 
without restrictions on documents’ script or mode of rendering 
(i.e., handwritten or printed). Our approach is based on the 
geometric decomposition and metrical characterization of the 
unprinted/unwritten space (page background) of a document 
by treating it as a complex shape with multiple “holes” 
corresponding to connected character sets. This recasts the 
structure of the unprinted page space in terms of neighborhood 
relationships and distances among connected character sets. 
We will then group proximate connected character sets into 
words based on a graph pruning approach.  
Our research to date on shape analysis has yielded efficient 
tools to perform document parsing in the above manner: We 
have developed a novel geometric transform, namely the 
Chordal Axis Transform (CAT) [1] [2], using the Constrained 
Delaunay Triangulation (CDT) [8] of polygonal shapes. This 
creates a paradigm for structural segmentation and analysis of 
complex two-dimensional shapes into morphologically 
meaningful components. The CAT enables the efficient 
parsing of shapes into semantically significant feature 
components. In particular, the CAT segments a shape into two 
kinds of feature primitives, namely limbs and torsos. Indeed, 
every planar shape may be decomposed exclusively in terms of 
these two kinds of basic feature primitives. The CAT of a 
shape, moreover, provides information about the metrical 
attributes and interconnectivity of these primitives. This, then, 
readily yields a weighted planar graph representation of the 
shape [2].  
We have formulated a linguistic scheme [3] for encoding 
shapes in terms of the feature primitives that constitute them. 
The feature primitives obtained by the CAT are represented 
symbolically, and form the alphabet of the linguistic 
representation. Symbolic strings represent the sequence of 
features occurring along the contours of a shape. Further, each 
character in a string is associated with an attribute vector, 
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which encodes the corresponding feature’s metrical attributes, 
such as length, width, area, etc. Thus, symbolic strings 
represent the embedding and structure of a shape, while the 
attributes capture the metrical aspects of features.  
In sections II and III we will describe briefly the techniques 
and tools employed by us to address the problem of text 
document parsing into words. In section IV we will describe 
our document parsing algorithm. 

II. GEOMETRIC SHAPE FEATURE EXTRACTION 

A. Feature Labeling 

For a polygonal shape P, let CDT(P) denote the set of all 
triangles in its Constrained Delaunay Triangulation [8]. The 
triangles of a polygon’s CDT can be classified into three types, 
namely those with two external (i.e., polygonal boundary) 
edges, those with one external edge, and those with no external 
edges.  Each kind of triangle carries morphological 
information about the local structure of the polygon.  
Accordingly, they are given different names.  A triangle with 
two external edges marks the termination of a “limb” or a 
protrusion of the polygon and is called a termination triangle 
or a T-triangle.  A triangle with one external edge constitutes 
the “sleeve” of a “limb” or a “torso”, signifying the 
prolongation of the polygon, and is called a sleeve triangle or 
S-triangle.  Finally, a triangle that has no external edges 
determines a junction or a branching of the polygon, and will 
accordingly be called a junction triangle or a J-triangle. A 
limb � is a chain complex of pairwise adjacent triangles, of the 
form TS . . . SJ or JS . . . ST (Fig.1), and a torso � is a chain 
complex of pairwise adjacent triangles, of the form JS . . . SJ 
(Fig.2).  

 
Fig.1 A limb chain complex 

 
Fig.2 A torso chain complex 

The number of sleeve triangles in a limb or a torso is allowed 
to be zero; thus, the duos JT or TJ also define limbs and, 

likewise, the duo JJ also defines a torso. Torsos can be further 
distinguished into two categories: If all the internal edges of 
the sequence of S-triangles between the two J-triangles of a 
torso connect pairs of points that belong to the same connected 
contour component, then the torso is termed a stem. Otherwise 
(i.e., even if one internal edge of the sequence of S-triangles 
connects a pair of points that belong to different connected 
contour components,) it is termed a handle. If there are no S-
triangles between the two J-triangles of a torso then the above 
conditions apply for the common edge of the two J-triangles. 
Both sides of a stem can be accessed by traversing along a 
connected contour component of a shape, while only one side 
of a handle is accessible to any connected contour component. 
It is easy to see that handles occur only in shapes that have at 
least one hole.  
The limbs, stems, and handles of a shape form its generic 
feature primitives. Each feature primitive is assigned a vector 
� of attributes, which may have the length, width, variance, 
area, etc., of the feature primitive as its components3. These 
components serve to capture the “vital statistics” of the feature 
primitive.  

 

B. Shape Skeletonization and Pruning 

A skeleton of the polygonal shape that has the same 
connectivity as the shape and serves as the local axis of 
symmetry of the shape can be constructed by making only 
local constructions within each triangle in the shape’s CDT as 
follows (Fig. 5):  
1) In each S-triangle join the midpoints of the edges that are 

internal to the shape (i.e., not lying on the shape 
boundary). 

2) In each  J-triangle: 
(a) join the midpoints of all the sides of the J-triangle to its 

circumcenter (the intersection of the perpendicular 
bisectors of the sides of the triangle) if the triangle is acute 
(i.e., if the circumcenter lies inside the triangle); or 

(b) join the midpoint of the longest side of the triangle to the 
midpoints of the other two sides if the triangle is not acute 
(i.e., if the circumcenter lies outside the triangle). 

The skeleton induces a planar graph representation of the 
shape structure. Indeed, consider the graph whose vertices are 
nodes of degree 3 (junctions) or degree 1(terminations) in the 
skeleton, and whose edges are the polygonal arcs connecting 
nodes of degrees 3 and 1. Thus an edge between two degree 3 
nodes represents a torso (i.e., a stem or a handle), while an 
edge between a degree 3 and a degree 1 node represents a 
limb. By weighting each edge of the graph with the metrical 
information of the corresponding feature, we obtain an 
attributed graph representation of the shape’s structure.  
The shape and its skeleton (and therefore its shape graph) can 
be further pruned to excise undesirable morphological 
features.  In the CDT of a polygonal shape, each side of a J-
triangle that connects boundary points of the same boundary 
component subtends a chain of polygonal vertices that does 
not include the vertex of the J-triangle opposite to this side 
(Fig.3).  The ratio of morphological significance 

ρ = d AB/ , of the distance d between the farthest point p 
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of the chain from the side AB, of the junction triangle ABC, is 
a quantitative indication of the importance of the portion 
AopqrsBA in describing the overall shape (Fig.3).   
 

 

Fig.3. Pruning a morphologically insignificant 
feature.  The contour points A and B must belong to 
the same contour component. 

 
Whenever a part of a shape (subtended by an edge of a J-
triangle) is morphologically insignificant, i.e., whenever ρ is 
less than some threshold, the part is excised from the shape. 
The edge subtending the excised part becomes part of the new 
polygonal boundary (i.e., A and B become neighboring 
boundary vertices of the modified polygon), while the J-
triangle to which the edge belongs becomes an S-triangle. This 
results in a simplified shape that still represents the salient 
features of the original shape. Accordingly, the new shape’s 
skeleton does not reflect the morphologically insignificant 
branches associated with the excised part of the shape (Fig. 4). 
 

           

Fig.4. Polygonal human shape with noisy boundary 
shown with skeletons before and after ( =0.4) 
pruning. 

 

III. SYNTACTIC SHAPE CHARACTERIZATION 

We are now in a position to encode the exterior of a polygonal 
shape via a syntactic string of feature primitives: 
Tracing (counterclockwise, say,) the outer contour of a 
polygonal shape, which has been decomposed into its feature 
primitives via its CDT, we will encounter, in sequence, the 
feature primitives (i.e., limbs, stems, and handles) of the shape 
that are adjacent to its outer contour (Fig. 6). If we encounter a 

limb, we will record this by appending the symbol “ l ” to the 
string (which is initially empty), if we encounter a handle, we 
will record this by appending the symbol “ h ” to the string. 
Finally, if we encounter a stem, we will record this by 
appending the symbol “ ( ”, if this is the first time this stem has 
been encountered, or by the symbol “ ) ”, if this is the second 
time the stem has been encountered (Fig. 6 ). The resulting 
string is a sentence in a language that characterizes the 
exteriors of shapes in terms of features occurring along their 
outer contours. The symbols l, h, (, and ) are the terminal 
characters of the language. Each symbol in the string is 
associated with the attribute vector � = (�, �, �) of the 
corresponding feature, where � is the length, � is the average 
width, and � is the area of the corresponding feature primitive 
(Fig. 7). These attributes can be computed from the CAT, as 
can other attributes such as directionality, mean curvature etc., 
as the application demands. The attributes may further be 
normalized to achieve scale-free representations if necessary. 
Thus, we have an attributed syntactic representation of 
polygonal shape exteriors.  
 

  
Fig.5 Feature primitives 
highlighted by the skeleton 

Fig.6 Syntactic feature labeling 
and string representation of 
shape exterior 
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Feature         D           O              Z 
   L           202.312    20.524     9.857 
   L           286.204    41.111     6.962 
   (              49.714      4.590    21.664 
   (            165.397    20.480    16.152 
   L           366.757    50.986     7.193 
   L           333.293    45.503     7.325 
   )            165.397    20.480    16.152 
   L           274.325    39.921     6.872 
   )              49.714      4.590    21.664 
 
D = Area of the feature primitive 
O = Length of the feature primitive 
Z = Mean width of the feature 
primitive 

Fig.7 Syntactic representation of a human shape and the 
corresponding feature attributes 
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This representation is however not unique. Indeed, consider a 
string � � 321 CCC�� . An equivalent representation of this 

string is � �132 CCC�� . This is because the outer contour of 

a shape is a closed curve, and as such, there is no intrinsically 
distinguished point on it from which we can start scanning for 
feature primitives. Thus, depending on where we start tracing 
on the outer contour, we get different representations of the 
same string. One way to normalize string representations 
would be to lexicographically order all possible rotations, and 
pick the first string. Indeed, giving a definite order to the 
alphabet of terminals induces the lexicographic ordering. 
Elsewhere [3] we prefer to use a normalization that has value 
from the point of shape recognition. For the purposes of this 
paper, however, the exact method of normalization of the 
string is irrelevant.  
In many applications, the syntactic characterization of the 
exterior of a shape, without regard to holes, may be sufficient. 
A complete description of a shape with holes is also possible 
with the method of syntactic encoding of shape exteriors that 
we have introduced. In essence, this complete representation is 
obtained by encoding each inner hole contour via the feature 
primitives occurring along it. The shape may then be 
syntactically represented by a set of strings, each for one hole, 
and one string for the outer contour. The outer contour will be 
given the number 0 and the holes are numbered randomly with 
numbers 1 to n, where n is the number of holes.  In shape 
recognition applications, an unambiguous representation of 
shapes with holes is necessary. Elsewhere [3], we have 
developed a technique for the canonical ordering of the strings 
of a shape, so that two identical shapes have their strings listed 
in the same order. We will however not describe the technique 
here as it is not necessary to have a canonical representation 
for our present purposes, although our illustrations reflect this 
canonical ordering.  Thus, we have a complete attributed 
syntactic representation of a shape with n holes in terms of n+1 
strings.  
 

IV. SEGMENTING A DOCUMENT INTO WORDS 

For the purposes of this paper, we will assume that a digitized 
document image has been segmented into a binary image, with 
the unprinted portions of the document in white and the text in 
black. Indeed, segmentation of documents is far easier than 
that of general imagery, and there are several methods that 
give satisfactory results. We will treat the white portions 
(shown in green in our illustrations) of the segmented image as 
the interior of a complex shape with the black (text) portions 
not intersecting with the document boundary as holes in the 
shape (Figs. 8b & 9b). If the shape has multiple connected 
components (say, due to a line running across the entire 
document), we will treat each connected component 
separately, since each such component corresponds to a 
portion of the page. Finally, we will ignore or discard all 
connected shape components that do not have any holes in 
them, as these correspond to portions of the document with no 
text in them. This step eliminates from consideration all 
“islands” of page created by loops or enclosures in text (as 

found in “A”, “b”, “g”, etc.) For each retained connected shape 
component, all (i.e., outer and inner) polygonal contours are 
extracted (red lines in Fig. 8c). At this stage, very short 
contours (4 to 6 pixels) corresponding to document noise are 
suppressed, and the remaining contours are subjected to 
Gaussian smoothing.  A CDT of the interior of each 
component is performed, and the various shape features (i.e., 
limbs, stems, and handles) are identified and metrically labeled 
with the average width attribute (the area and length attributes 
are not relevant for our analysis here) via the CAT. The CAT 
of the shape is then pruned to eliminate all limbs and stems, so 
as to retain only handles. This is done because we are 
interested only in the separation between connected character 
components (i.e., holes) and not in the involutions of these 
holes. This pruning is equivalent to setting the ratio of 
morphological significance  = ��� ���� ���	
��� �� ������
operations are illustrated in Fig. 8c, where the contours are 
shown in red, the triangle edges in light blue, the sleeve 
triangles in yellow, the junction triangles in white, the pruned 
areas in green, and the pruned skeletons consisting only of 
handles in dark blue.  
The inner hole contour strings are numbered, shown in yellow 
in Fig. 8e. As a result, each handle obtains a pair of numbers, 
each corresponding to a contour bounding the handle. This 
handle-contour association is important for building the lookup 
table for character adjacency graph construction and pruning. 
 
 

 
Fig. 8a Sample portion of a handwritten English text document image 
 

 
Fig. 8b Binary segmentation of document into character groups and page 
 

 
Fig. 8c Constrained Delaunay triangulation (light blue) with pruned skeleton 
(dark blue) consisting of only handles. Pruned areas are shown in green, sleeve 
triangles in yellow, junction triangles in white, and smoothed contours in red. 
 

 
Fig. 8d Pruned skeleton partitioning page area into hole neighborhoods. 
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Fig. 8e Numbering of hole contours. The associated hole neighborhoods also 
inherit the numbering of the hole contours they surround. 
 

 
Fig. 8f Lookup table showing contour number (red) with contour numbers of 
adjacent hole neighborhoods (blue) and the corresponding average widths of 
handles separating two contours. 
 

 
Fig. 8g Pruned character adjacency graph showing subgraphs representing 
word groupings based on average handle widths in the lookup table 
 

 
Fig. 8h Merged hole neighborhoods reflecting words segmented based on the 
pruned character adjacency graph 
 

 
We will associate the connected page region surrounding each 
text hole, and enclosed by a fence of handles, with the hole for 
convenience. These will be termed hole neighborhoods. Thus, 
hole neighborhoods partition the page space into disjoint 
neighborhoods of connected character groups (Fig. 8d). We 
will generate a connected planar graph termed the character 
adjacency graph (CAG), which is dual to the pruned skeleton 
graph, to represent the neighborhood relationships between 
connected character components. Each hole neighborhood is 
represented by a vertex of the CAG, and two vertices are 

joined by an edge if the corresponding hole neighborhoods 
share a handle. Each edge of CAG is weighted by the average 
width attribute of the corresponding handle. The numbering of 
the contour strings produces a lookup table (Fig. 8f) consisting 
of a list of contour numbers (numbers in bold red) and their 
adjacent contours’ numbers (numbers in bold blue) with 
corresponding average widths (in number of pixels, given by 
numbers in black in the table) of the handles separating them. 
Only hole contours and their mutual adjacencies are shown in 
the lookup table as we are not interested in the adjacency 
relationships between the document’s outer contour (numbered 
0) and the hole contours.  
We use a simple rule to prune the CAG generated above, in 
consultation with the lookup table and handle directionalities: 
 An edge is deleted in the CAG if and only if  

i) it does not represent the narrowest separating 
handle for at least one of the two hole 
neighborhoods corresponding to the vertices 
upon which the edge is incident, or 

ii) the width of the handle it represents is greater 
than the average of the minimum average handle 
widths of all contours. 

For example, the minimum average handle width of contour 16 
is 5.465 pixels (separating it from contour 17), and that of 
contour 17 is 4.479 pixels (separating it from contour 15) as 
displayed in the lookup table in Fig. 8f. In the case of the 
written English script (Fig. 8a), the average minimum handle 
width of all contours is 7.872 pixels. 
The pruning operation results in several connected subgraphs 
of the CAG with mutually exclusive vertex sets (Fig. 8g). 
These graphs yield the desired grouping of character sets to 
form words (Fig. 8h), according to the pruning rules 
employed. In the example of the English script, the number of 
distinct connected character groups is reduced from twenty 
four (Fig. 8e) to twelve word groups (Fig. 8h), of which two 
are punctuations or modifier strokes, and may be discarded on 
account of the negligible areas of their holes. 

V. DISCUSSION 

The graph-pruning rule we have employed here is a heuristic 
based on common knowledge about grouping English 
handwritten characters into words. This rule is by no means 
complete or sufficient to parse most generic handwritten 
English documents. The formulation of a proper set of pruning 
criteria is a subject of future research and experimentation. 
Neural network-based approaches may be appropriate to 
precipitate such rules by training on large sample classes and 
using handle attributes inputs. It may also be necessary to also 
compute attributes other than of handles, such as rough 
orientation (i.e., whether horizontal, vertical, or diagonal), 
position on page, etc, for more sophisticated character 
grouping and assignment operations. Indeed, directionality of 
handles is important for segmenting lines of text, as words 
along a line tend to be separated by vertical torsos. Similarly, 
horizontal torsos separate lines and paragraphs, albeit of 
different width classes. 
It is also possible that the grouping rules differ from script to 
script. For example, our experiment with Arabic printed text 
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(Fig. 9a) shows that pruning the CAG based on average widths 
of handles (Fig. 9e) leads to erroneous word formations, as 
evidenced by the grouping of character holes twelve and 
twenty-one in Fig. 9f. However, when sub-rule i) is applied 
without using sub-rule ii) employing minimum handle widths 
(not shown in table) instead of average handle widths, we 
obtain a more correct grouping into words (Fig. 9g). If, on the 
other hand, we had used minimum handle widths instead of 
average handle widths in the case of the handwritten English 
script example, we would have introduced groupings between 
character sets in the top and bottom rows due to the 
descending strokes and ascending strokes interacting with 
lower and upper rows, respectively. 
 

 
Fig. 9a Sample portion of a printed Arabic text document image 
 

 
Fig. 9b Binary segmentation of document into character groups and page 
 

 
Fig. 9c Pruned skeleton shown partitioning page area into hole neighborhoods 
 

 
Fig. 9d Numbering of hole contours. 
 

 
Fig. 9e Pruned character adjacency graph showing subgraphs representing 
word groupings based on average handle widths in the lookup table. 
 

 
Fig. 9f Merged hole neighborhoods reflecting words segmented based on the 
pruned character adjacency graph in Fig. 9e. 
 

 
Fig. 9g Pruned character adjacency graph showing subgraphs representing 
word groupings based on minimum handle widths (not shown in lookup 
table). 
 

 
Fig. 9h Merged hole neighborhoods reflecting words segmented based on the 
pruned character adjacency graph in Fig. 9g. 
 

 
Fig. 9i Lookup table showing contour number (red) with contour numbers of 
adjacent hole neighborhoods (blue) and the corresponding average widths of 
handles separating two contours. 
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The examples provided by us here serve to illustrate how the 
general geometric framework proposed by us may be used to 
efficiently segment and extract words from text document 
images across different languages and in both printed and 
hand-written documents.  The derivation of other useful CAG 
edge attributes and pruning rules is outside the scope of this 
paper.  
The overall average time complexity of our algorithm is of the 
order nlogn, where n is the number of contour points of the 
segmented unwritten page shape. This is due to the fact that 
the average time complexity of the CDT is of the order nlogn. 

VI. CONCLUSION 

We have presented here a broad but versatile geometric 
framework for text document image parsing into words. 
Successful implementation of this technique with adaptations 
to specific scripts could significantly improve over existing 
techniques for document parsing, and enhance the robustness 
of word spotting and word frequency algorithms. Our 
continuing research in this area will focus on computing more 
sophisticated handle descriptors, and formulating better 
heuristic graph-pruning rules for character grouping. 
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